
Understanding the Use of Inflammatory Headlines to Alter the Perception of an
Article

Sami Rafat Amer (samiamer@mit.edu)
Junior, Course 6-9, EECS and BCS

All code can be found at: https://github.com/sami-amer/headline-effects

Abstract

In this project, I used New York Times article and headline data
from 2003 to draw conclusions about the objectivity and tone
of headline/article pairs. Through various methods in Python
and WebPPL, I show that there is a clear difference in the ob-
jectivity of headlines and articles: headlines are consistently
less objective, and lean more towards an emotive tone (positive
or negative). The larger the difference in objectivity, the larger
the difference in tonality between the headline and article. This
trend held across the entire data set, with some outliers ap-
pearing when the difference in objectivity was small enough
as to be considered insignificant. I also used a general mixture
model to cluster the data, to confirm these same trends. I also
used this mixture model with rejection sampling to control for
specific variables, showing that our trends held even when we
set one of the variables to some constant. While there were
limitations to what I could feasibly analyze and compute, the
data and analysis in this paper suggests that, across all New
York Times articles from 2003, the headlines were consistently
and significantly less objective and exhibited more tone than
the article itself.

Keywords: NLP; GLoVe; New York Times; Sentiment Analy-
sis; NLTK; SentiWord Net; Python; WebPPL; General Mixture
Model

Introduction
One can argue that the headline is the most important part
of the news article: it is likely to be read in full, even by
those who do not intend to read the article, and it sets the lens
through which the rest of the article is viewed. Knowing the
power of the headline, news organizations and journalists cu-
rate them carefully and deliberately, oftentimes updating the
headline as new information comes to light, sometimes vastly
changing the perception of an article. With this in mind, I set
out to find a trend between the objectivity and tonality of ar-
ticle/headline pairs. Through various methods of analysis, I
hoped to find a concrete trend relating articles and headlines.
I expected more emotive, inflammatory headlines to corre-
spond to a larger gap in objectivity between the headline and
the article’s text, with more ’accurate’, or appropriate, head-
lines corresponding to a smaller gap. In this project, I use
a combination of methods from 9.66 as well as additional
machine learning tools to analyze how headlines play with
a reader’s expectations, and how this often differs from the
reliably more neutral reality presented in the article itself.

My analyses show, When the headline and article share
sentiment, the author gets what they expect: an objective
headline corresponds to an objective article. Otherwise a

reader’s expectation will be very different from the reality of
the text. Understanding this is especially critical in today’s
click-bait culture, where readers often only read the headline
while scrolling by, then disseminating this headline to oth-
ers. The objectivity and tone of the headline are oftentimes
more critical to the public perception of an event than the
content of the article itself, and any purposeful alterations in
the headline to make them more inflammatory can be seen as
purposeful misrepresentation of the news.

Data set
The data set used was a month sub-set of the Concretely-
annotated New York Times (Ferraro et al., 2014). I chose
the month of March in the year 2003. The data set was pre-
processed using Concrete, an NLP toolkit. As I did not need
any of the Concrete-specific methods, I stripped all the Con-
crete annotation and used the data as plain-text.

Methods
To find a pattern between the sentiments of headlines and ar-
ticles, I first needed to calculate some sort of sentiment score.
In addition to analyzing the sentiment scores through visu-
alization, I also wanted to see if there were any significant
clusters within the data. I employed a variety of methods:
sentiment scores were calculated and plotted with Python,
while clustering relied on WebPPL (Goodman & Stuhlmüller,
2014).

Cleaning and Pre-processing the Text
Before any calculations were done, the text was cleaned, re-
moving any non-alphanumeric characters, setting all letters
to lowercase, and stripping any line breaks, indents, punctu-
ation, or HTML characters. Next, the words were tokenized
with NLTK’s tokenizer, after which I removed all stop words
that occured in the NLTK stop word dictionary. Finally, I
lemmatized the tokens using the Word Net Lemmatizer from
NLTK (Bird, Klein, & Loper, 2009).

Computing Sentiment Score
For sentiment analysis I set out to use the popular Sentiword-
Net (Esuli & Sebastiani, 2007), which was readily accessi-
ble in the Python NLTK package (Bird et al., 2009). Senti-
WordNet computes a positive, negative, and objective score
per word, and does not take into account the overall sentence



structure. This was by design and not a short-coming: while
there are tools that give the sentiment score of the entire text
at once,I wanted to reduce the biases from pre-trained tools
as much as possible. Additionally, I wanted the granularity of
being able to work word for word. To do this over the course
of a text, I iterated through each word, tallying each score
(positive, negative, objective) and then averaging it over the
number of words in the text. This gives the overall positivity,
negativity, and objectivity of a piece of text. Objectivty and
positivity ranged from 0 to 1, with closer to 1 meaning the
text was more objective or more positive, respectively. Nega-
tivity ranged from 0 to -1, with a more negative score corre-
sponding to a more negative article. Note that an article has
all three scores at once, and due to the method of calculation
a negative article still has a positivity score, and vice versa.

Plotting Sentiment Scores
To plot the data, I used Python packages MatPlotLib and
Numpy (Hunter, 2007). To accurately plot trends, I used our
previous scores to compute some new metrics:

1. Objectivity ratio, the ratio of the article’s objectivity to the
headline’s objectivity (a higher score here meant the article
was more objective)

2. Objectivity difference, which is the absolute value differ-
ence between objectivity of the article and headline

3. Tonal difference, which is the absolute value difference of
the positive scores added to the absolute value difference
of the negative scores.

Clustering
For clustering, I built off the general mixture model (Kemp,
Loorbach, & Rotmans, 2007) from 9.66’s fourth problem
set. To maintain as much continuity between the problem
set model and my new model, I ran all the code inside the
problem set itself, which is browser-based. With some dif-
ficulty, I was able to force Safari (my browser of choice) to
override the JavaScript code for visualization with my mod-
ified version of the code that added a wider color spectrum
(expanded from 9 colors to 100), which allowed me to color-
map the data directly in WebPPL. There was also an issue
with importing data (see Limitations), and as such I was lim-
ited to 1250 samples, which I chose randomly from the 6000
samples in the data set. I plotted this data to confirm that the
distribution was representative of the total data set and then
used Python to create a list of dictionaries, each of which had
tonal difference, headline objectivity, objectivity difference,
and a color calculated based on the objectivity difference. I
then turned this list of dictionaries to a string, and copy-pasted
the plain-text into WebPPL. Due to the similarities between
JavaScript objects and Python dictionaries, I was able to as-
sign this to a variable directly.

While the general underlying model of the problem set was
similar to what I wanted, I had to change a significant amount
of the code to account for the difference in date (mostly

a jump from categorical distributions to Gaussian distribu-
tions). I changed all of the categorical distributions to Gaus-
sian, with mu and sigma derived from the set of 1250 sam-
ples. I also changed the number of categories to 20, as I ex-
pected more classes due to the large amount of data.

After changing the code, I ran a Markov-Chain Monte
Carlo inference, and plotted the data.

Looking for Bias
To look for a trend in headline-article bias, I again borrowed
methodology from problem set four, this time building my
code off of the ImagineColor code. The idea was to imagine
away, or control, each of the three variables in my data set,
and see if the model had any inherent bias. Additionally, the
plots could tell us more about the the relationship between
these variables.

To achieve this, I created three functions:
ImagineObjDiff, ImagineHeadlineObj, and
ImagineTonalDiff. Similarly to the problem set, I
used rejection sampling to plot more efficiently.

Analysis
Analysis of the Data in Python
I first created a scatter plot which mapped the tonal difference
to the objectivity difference, which can be seen in Figure 1.

Figure 1: Scatter plot of the Tonal Difference vs Objective
Difference

Here we see a large clustering towards the bottom-left of
the page due to a large amount of articles that had a smaller
objectivity difference; this specific subset of noise becomes
more apparent in the subsequent quiver plots, as well as the
WebPPL plots (shown later in this section). In this scatter
plot, however, we can clearly see tonal difference increasing
linearly with objectivity difference. This means as the delta
in tone between an article and its headline increases, the delta
in objectivity between the article and its headline increases



as well. This plot clearly shows that less objective headlines
tend to have less objective tones.

Wanting to pursue this specific trend further, I created the
quiver plot you see in Figure 2. This quiver plot was created
manually using MatPlotLib lines and arrows: this was a de-
liberate choice to properly contextualize the magnitudes of
the arrows.

Figure 2: Quiver plot of the tonal difference and objectivity

In this quiver plot, I mapped the arrows from the headline
objectivity (red) to the article objectivity (blue) in an attempt
to discern the magnitude of difference between the tone and
objectivity of each headline/article pair. The large majority
of the arrows point up, representing the increase in objectivity
between the headlines and the articles (i.e. articles are usually
more objective than their headlines). There were some arrows
pointing down, but these were limited to the subset of noise in
the top-left, where the objectivity of the article and headline
are very close. So, these cases were of such small size as
to be insignificant and related to small uncertainties in the
objectivity and tone calculations.

Notice also the magnitude of the arrows: when the tonal
difference is large, so is the difference in objectivity, with the
headline being significantly less objective. This may seem
straightforward, but remember that we calculated these scores
in such a way that a piece of text had all 3 scores (positive,
negative, objective) independent of each other. This shows
adding an “emotive” or otherwise inflammatory headline cre-
ates a very large gap between the expectation and reality of
the article.

Having established that there is seemingly some trend in
the difference in objectivity between headlines and articles, I
began plotting the positive and negative scores to see if the
tone had similar trends. To do this, I created quiver plot that
plotted an arrow for every article based on its positivity and
negativity score. The base of the arrow represents the head-
line’s tone and the tip represents the article’s tone. I also color

mapped the plot based on the arrow size, with a color bar on
the right that maps color to arrow length. This can all be seen
in Figure 3. This quiver plot was made using MatPlotLib’s
quiver function, and as such the arrows are not to scale, but
are still scaled relatively, so that one arrow may be compared
to the next.

Figure 3: Quiver plot of the positive and negative score, color-
mapped to arrow size

Here again we see a consistent arrow direction, this time
towards the top-left, which signifies the articles are often less
negative and less positive than their headlines. No matter
where the headline falls on the scale, the articles consistently
show less tone. We can also see the magnitude of change get
larger the further away from neutral tone we get: headlines
that are very positive, very negative, or a lot of both are much
further from the scores of their respective articles than head-
lines that are closer to neutral in tone.

For another view on this same plot, I changed the color
mapping to represent the objectivity ratio instead of the arrow
size. To more clearly define the differences, I log-normalized
the color mapping. All of this can be seen in Figure 4



Figure 4: Quiver plot of the positive and negative score, color-
mapped to obj. ratio

With the log-normalized colormap, we can see the trend
in objectivity difference matches almost exactly the trend in
tone. As we might expect, the larger arrows had a larger ob-
jectivity ratio, which aligns with our expectations of the arti-
cle being more objective than the headline. We can see arti-
cles with highly positive or highly negative headlines also had
larger objectivity differences between the article and head-
line.

Analysis with WebPPL
I now applied the clustering analysis in WebPPL to validate
the trends in objectivity difference and tonal difference I was
seeing visually in my plots. To begin the WebPPL analysis, I
first plotted the data based on its headline objectivity vs tonal
difference, using a colormap based on the objectivity differ-
ence imported from Python. This data is a randomly selected
sub-sample of 1250 article/headline pairs. The color repre-
sents the objective difference, with red being smallest and vi-
olet being largest (I used the gist rainbow color map). We
can see this plot in Figure 5.

0 0.2 0.4 0.6 0.8 1
tonal_difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

he
ad
lin
e_
ob
j

Figure 5: Our color mapped data as plotted in WebPPL

This plot is directly analogous to our quiver plots in Python
and validates the data was correctly imported into WebPPL. I
then ran the general mixture model with K = 20, with Gaus-
sian distributions for the headline objectivity, tonal differ-
ence, and objectivity difference. I computed µ and σ for the
Gaussian distributions based on the mean and standard devia-
tion of my article data in Python. The general mixture model
created fifteen classes, which can be seen below. A sample of
six classes is shown in Figure 6 below.

Figure 6: Six sample (out of fifteen) clusters identified using
a general mixture model in WebPPL.

I initially expected the data to cluster based on objectivity
difference, and that we would see clear clusters according to
the color. While we see some interesting clusters and they
definitely show a strong trend with color (i.e. objectivity dif-
ference), we find that the predisposition of the data to cluster
at the top-left heavily skews what clusters the model can find.
I attempted to alleviate this by varying the µ and σ values, but
to no avail. However, while this subset of noise affected the
clustering, it mostly made redundant clusters. What unique
clusters we do have match how we would initially expect the
data cluster.

For further analysis, I controlled for one variable at a time
(by setting it to some constant) and used rejection sampling to
plot the remaining two variables. I first did this for objective
difference, setting it to 0.3 and generating 100 samples, as
can be seen in Figure 7.



0 0.2 0.4 0.6 0.8 1
tonal_difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

he
ad
lin
e_
ob
j

Figure 7: ”Imagining” all objective differences to be the same

For a low objective difference (like our fixed parameter
0.3), we expect an objective headline and a low tonal differ-
ence between article and headline. Looking at the plot, we
can see that it matches this expectation, with a cluster located
at the top left of the graph (remember that we controlled for
objective difference, which is represented through color. As
such, all of the data points are the same color).

I controlled for tonal difference by setting it to 0.2, gen-
erating Figure 8. The plot again confirms our expectations
from earlier analysis, showing that at a low tonal difference
we have higher headline objectivity. We can also notice that
the data defines some range of headline objectivity from 0.7
onward. I suspect that this would hold with more samples,
but was not able to test this (see Limitations). Notice also
the color (which corresponds to objectivity difference): while
it varies, it does not stray too far from red (low objectivity
difference). This accurately reflects our earlier quiver plots,
which had the smaller arrows in the top left.

0 0.2 0.4 0.6 0.8 1
tonal_difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

he
ad
lin
e_
ob
j

Figure 8: ”Imagining” all tonal difference to be the same

Finally, I controlled for headline objectivity, setting it to
0.75. Initially, I got the cluster we see in Figure 9. To further
validate this tight cluster, I ran the rejection sampling again
for 100 samples, which is what we see in Figure 10. While

the cluster gets a little wider, it remains significantly tight,
showing that at a high headline objectivity, we can expect
less tonal difference in the article/headline pair. Additionally,
we can see that the colors cover a range similar to Figure 8,
again representing low objectivity difference.

0 0.2 0.4 0.6 0.8 1
tonal_difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

he
ad
lin
e_
ob
j

Figure 9: ”Imagining” all headline objectivity to be the same,
with 20 samples

0 0.2 0.4 0.6 0.8 1
tonal_difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
he
ad
lin
e_
ob
j

Figure 10: ”Imagining” all headline objectivity to be the
same, with 100 samples

Conclusions
Through multiple methods of data generation and analysis, I
showed that there is a clear difference in the objectivity of
headlines and articles: headlines are consistently less objec-
tive, and lean more towards a tone (positive or negative). The
larger the difference in objectivity, the larger the difference
in tonality between the headline and article. This trend held
across the entire data set, with some outliers appearing when
the difference in objectivity was small enough as to be con-
sidered insignificant. This trend is significant; it shows that
the New York Times headlines in our data set, whether pur-
posefully or accidentally, are much more inflammatory than
the content in their respective articles. This is problematic as
it significantly alters how an article is read, and even more so
how a news event is viewed. The gulf in objectivity leads to a



serious misrepresentation of an article or event, especially in
today’s click-bait culture that does not reward thorough read-
ing or fact-checking of articles, instead focusing on bite-sized
news. As we move towards quicker and quicker methods for
consuming media, it is critical we keep in mind the effects
of headlines, maintaining their objectivity within the scope of
the related text to paint an accurate picture to both the thor-
ough reader and the passer-by

Limitations and Future Work
Data and Computation Limitations I encountered many
limitations throughout the course of this project, which if
fixed could lead to stronger results. The most apparent of
these limitations is the choice of data: I chose a narrower
set of one-month to keep the computational cost reasonable.
With no GPU-acceleration or multi-core CPU, anything more
would have consumed too much of the project time-line. In
addition to the data being computationally-expensive to gen-
erate, the move from Python to WebPPL forced me to select
a sub-sample of 1250; this was due to the browser-based na-
ture of the environment, which ran into a maximum recursion
issue with anything more. Setting up a larger environment
would allow us to use more of our data, allowing us to make
stronger conclusions. In addition to the data limitation in
WebPPL, I ran into significant resource-related issues, which
were most apparent when controlling for specific variables in
our rejection sampling. Attempting to run rejection sampling
for ranges of data that were more sparse in our original data
set froze the program and spiked the CPU past its limit. Sim-
ilar to the data generation, more computational power here
would allow us to run more analysis and reach stronger con-
clusions.

Data Noise As can be seen throughout the paper, the data
was very noisy – as most articles and headlines had little ob-
jectivity difference – and skewed heavily to smaller articles
with little objective or tonal difference. I believe these to be
smaller, less significant – although common – articles, like
obituaries or updates. Devising some method to sample more
equally across the distribution would reduce this noise, allow-
ing us to more easily analyze our data without seeing it skew
towards this sub-set of noise.

Semantic Similarity Initially, this work used semantic sim-
ilarity between articles and headlines. I calculated this using
PyTorch and GLoVe embeddings, generating some metric for
the similarity of the article/headline pairs. This metric proved
to be too noisy, and was of no significance when we plotted
it against other variables. In future work, I would hope to
devise a better way to calculate this semantic similarity, as I
believe there is important analysis to be done regarding se-
mantic similarity and objectivity.

Acknowledgments
I would like to thank my girlfriend Holly Jackson for her help
throughout the project and inspiration from some of her pre-
vious work (Jackson, 2021; Holly M. Jackson, 2021) and Pro-

fessor Josh Tenenbaum for guidance throughout the semester.

References
Bird, S., Klein, E., & Loper, E. (2009). Natural language

processing with python: analyzing text with the natural lan-
guage toolkit. O’Reilly Media, Inc.

Esuli, A., & Sebastiani, F. (2007). SentiWordNet:
A High-Coverage Lexical Resource for Opinion Mining
(Tech. Rep. No. 02). Istituto di Scienza e Tecnologie
dell’Informazione.

Ferraro, F., Thomas, M., Gormley, M., Wolfe, T., Har-
man, C., & Durme, B. V. (2014). Concretely an-
notated corpora. In NIPS Workshop on Automated
Knowledge Base Construction (AKBC). Retrieved from
https://doi.org/10.35111/xgs8-5140

Goodman, N. D., & Stuhlmüller, A. (2014). The Design and
Implementation of Probabilistic Programming Languages.
dippl.org. (Accessed: 2021-12-13)

Holly M. Jackson. (2021, May). New York
Times Content Analysis. Retrieved from
github.com/hollyjackson/NYT Content Analysis

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment.
Computing in Science & Engineering, 9(3), 90–95. doi:
10.1109/MCSE.2007.55

Jackson, H. M. (2021, May). The New York Times Dis-
torts the Palestinian Struggle: A Case Study of Anti-
Palestinian Bias in American News Coverage of the
First and Second Palestinian Intifadas. (Preprint at
web.mit.edu/hjackson/www/The NYT Distorts the
Palestinian Struggle.pdf)

Kemp, R., Loorbach, D., & Rotmans, J. (2007).
Transition management as a model for managing pro-
cesses of co-evolution towards sustainable develop-
ment. International Journal of Sustainable Develop-
ment & World Ecology, 14(1), 78-91. Retrieved from
https://doi.org/10.1080/13504500709469709


